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Abstract

‘QAA technique for determining the aerodynamic parameters
of a maneuvering reentry vehicle (MaRV) from post-flight
analys’s of radar tracking data was developed. 'The techni-
que uses a sequential weighted least squares estimator which
steps through the data processing batches of data sequen-
tially. The observations consisted of angle and range measure-
ments from a precision tracking radar located in the vicinity
of the iImpact area. A six dimension estimator consisting of
three position and three velocity components was designed
for estimating the state of the RV during free flight. Two
reentry estimators were developed. One, a seven dimension
estimator consisting of the six elements of the free-flight
estimator plus the ballistic coefficient, was designed to
estimate the state during ballistic reentry. The second is
the nine element MaRV estimator used once a maneuver is be-
gun., .An algorithm based on measurement residual monitoring

was devbloped to switch adaptively from the six-state esti-

mator to the seven-state estimator and then to the nine-state
Eii - estimator. A series of numerical simulations was performed

to validate the technique and its programming. Monte Carlo

simulations were used to verify the accuracy of the estima-

tor covariance matrix.

s ix
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POST~-FLIGHT TRAJECTORY RECONSTRUCTION OF A
MANEUVERING REENTRY VEHICLE FROM

RADAR MEASUREMENTS

I Introduction

Objective and Scope

The objective of this thesis was to develop a technique
for the efficient and accurate post-mission analysis of radar
tracking data collected on the reentry vehicle (RV) of a
ballistic missile. The RV was assumed to have the capability
of maneuvering in the atmosphere by controlling the direction
and magnitude of its lift vector. This ignorés the case of a
maneuverable reentry vehicle (MaRV) which might be designed
to maneuver by thrusting; and therefore, could conceivably
maneuver even above the atmosphere. In general, the technique
which was developed and which is described in this report
would not be applicable to such an RV, It was further assumed
that a single fadar was ideally located in the vicinity of the
impact area and that the radar tracked the RV from near hori-
zon break (~0° elevation) to very near impact., The accura-
cies of the radar tracking data, which consists of time~tagged
range, azimuth, and elevation measurements, were assumed to
be consistent with those of a state-of-the-art, precision,
phased-array tracking radar. The data rates were also con-
sidered to be within the capability of such a radar. A1l of

the data which were used for this investigation were
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simulated. Table I lists the pertinent information relative
to the simulated data where the noise on the data was simu-

lated as zero-mean white Gaussian noise.

Table I-1

Description of Simulated Data Used in Numerical Exampies

Data Rates:

Range 1 point per second above
Azimuth 120 Xm and 10 points per

Elevation second below 120 km

Data l-g Errors

Range Sm
Azimuth 0.016°
Elevation 0.020°

A further assumption is that all parameters other than
those being estimated are perfectly known. This is equivalgnt
to saying that there are no "Q-parameters", where Q-parameters
are defined by Day (Ref 11) and others as those parameters
affecting the observations but which, for some reason or
another, are not or cannot be estimated. These include,
among others, station 16cation, biases, and a most important
one for the technique developed, atmospheric density. This
is not a limitation on the technique itself but on the inter-

pretation of the covariance matrices which result.
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.......
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The Research Approach

The problem of real-time tracking of a reentry vehicle
based on its radar measurements has received considerable at-
tention in the literature ovér the past 2-3 decades. It has
been described by various authors (25) and (10) as a highly
compléx problem in nonlinear filtering. Since 1960, following
the important work éf Kalman and Bucy (Ref 20), the extended
Kalman filter (EKF) has found wide application for both the
ballistic reentry vehicle (BRV) tracking problem (22), (14)
and later the maneuvering reentry vehicle tracking problem
(10). This is owing to the real time nature of the problem
vhere measurements need to be processed as they become avail-
able so as to "point" the radar for the next measurement.

Here the primary emphasis is on maintaining track on the target.

The post-flight analysis problem is very similar to the
tracking problem, but it differs in two important aspects.,

The similarity is that the true equations of motion governing
the flight of the RV being tracked are the same in both cases.
The differences involve 1), the time constraint and 2), the
emphasis. In the post-flight analysis, there is virtually no
time constraint and the emphasis is on accuracy. That is to
say that we are interested in determining the RV state varia-
bles at some epoch timer(or possibly a series of epoch times)
with as much accuracy as the data will permit. It should,
after all, be the data which limit the accuracy of our esti-
mates and not our model. 1In the tracking problem, out of

'necessity imposed by the time constraint, many simplifying

'Defined as the time at which state variables are estimated.
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assumptions about the dynamics model are made, e.g., a flat,
nonrotating earth may be assumed. ;n‘tha post-mission
analysis problem, even a rotating, spherical earth is not of
sufficient accuracy. Because of this emphasis on accuracy,
much attention to detail is given in the later sections of
this report which deal with modeling the flight of the MaRV.
It should be pointed out that the terﬁrstate of the Rv'as used
above implies the RV state vector which consists of position,
velocity, and zero, one, or three aerodynamic parameters de-
pending respectively on whether the RV is in free flight,
ballistic flight, or maneuvering flight. Quite often, in
missile analysis, the aerodynamic parameters are the ones ve
are most interested in estime.'ng in post-mission trajectory
reconstruction.

Another advantage we have in the post-flight analysis
problem over the real-time tracking problem is that we have
all the data at hand to treat simultaneously, if we desirc{
or one point at a time, if we desire. This gives us great
flexibility in designing the estimator for the post-flight
analysis problem. It also forces us to make a phoica. Chang
et al., (Ref 8) have applied a fixed interval smogther. vhich
consists of combining the outputs of a forward pass of an ex-
tended Kalman filter with a backward pass of the extended
Kalman filter, to solve the problem. Gauss invented the
method of weighted least squares (WLS) in 1795 to solve an

astrodynamical problem by treating all of the available obser-

vations simultaneously. The technique, which was developed
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for this research is a very flexible algorithm which is based
on the method of WLS, The user, by'lpecifying the batch size
(1.e., the number of observations to process in a given batch),
can operate the program in either a batch WLS mode vhere

all data are treated simultaneously; or as an EKF treating

each data point (range, azimuth, and elevation at a single

time) separately; or any place in betweon as a sequential WLS
estimator.

Novel Features
The algorithm which vas developed and programmead for

this thesis research is presented in detail in the remaining

™
’

chapters of this report, It has two novel features. One is
the way in which the trajectory partials, vhich are required

in the weighted~-least-squares-differential-correction process,

v A LA

are calculated. The other is a technique for adaptively

svitching from the six-element state vactor used for free-

et g Sl
. 8 8 3
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-
R

flight estimation to the seven~element state vector used for

)
(UL G

ballistic-reentry~fiight and then from the seven-element state

g
E%f vector to the nine-slenent MaRV state vector,

%g The standard technique for calculating trajectory par-
ﬁg tials in both satellite and missile trajectory reconstruction
;%i is to integrate numerically a met of second order, ordinary
%i differential equations called variational equations. See for

example Refs (1), (27) and (34). The variational equations
have as their dependent variables the partial derivatives of

the total acceleration with respect to the parameters to be

. & s ol &y
e SeTete ale
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PR eotimated. Thore are at least (free-flight) 10 of these mecond
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order (corresponding to 36 first order) differential equations
to be integrated. They are typically passed to the same in-
tegration routine which integrates the equations of motion.
This represents a significant computational burden on a tech-
nique, whether batch or sequential, which is at best slowj
hovov;r, because the WLS differential correction technique is
inherently itcrativ@. the accuracies of the partials need not
be as great as those of the state variable themselves. The
validity of this claim is demonstrated iﬁ.Chapter IV of this
report where it is shown that the batch least squares estima-
tor convergos in tvo or three iterations with good initial,
estimates of the state variables.

As an examplae, a spherical harmonic series of zonal
harmonics, representing the potential of an oblote spheroid,
is used for accurately modeling the missile’'s acceleration due
to gravity); wvherevas, the predominate term of this series, that
due to a spherical earth, is quite adequate for partials cal-
culations. As a result of this less demanding requirement on
the partiald accuracies, a very simple Taylor's series expan-
sion is used to equate the state, ¥, ., at some time t,,, with
the state, X, at some earlier time ty ({.0.,, numerically in-
tegrate ii" This is then used in calculating the state tran-
sition matrix, §(t .., t;) which is central to the trajectory
partials’ calculations as well as to propagating the state
covariance matrix in time. The approximations mentioned above,

as vell as others used in the partials calculations, are given

in complete detail in Appendix B along with all the partials
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used in the development of the state transition matrix. It
should be emphasized that these approximations are only used
in partials calculations.

The other unique feature of the technique which was
developed is a method for adaptively sensing when a higher
order estimator is required and thén'switéhing to the higher
order estimator. As was mentioned earlier, it was assumed
that the data collection began as the RV broke the radar's
horizon meaning that several minuius;bf free-flight data were
collected. Free-flight is that phasc 6f the trajectory after
booster burnout and prior to reentry when the RV is acceler-
ated only by the force of the earth's gravity. During this

bhase of flight, the RV state vector is given as

X = (X,Y,2,%,Y,2)T

where X, Y, and Z are coordinates of_the RV's position vector
and i, Y, and 2 are coordinates of the RV’'s velocity in some
arbitrarily chosen cartesian coordinate system. In this con-
text, the state vector is a vector of those parameters we
wish to estimate at some given time called the epoch time
such that given the state vector at eéoch and the equation of
motion for each state variable, we can predict the state at
any other time within the interval during which the equations
are valid. A:iter reentering the earth's atmosphere, the RV

begins to experience an additional force, that due to atmos-

pheric drag. During this ballistic-reentry-phase* the RV's

*Even a MaRV initially reenter along a ballistic tra-
jectory. The MaRV state vector is given in later sections
of this report.
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state vector is given as
T
X = x,v,2,x,Y,z,8)

vhere B is a parameter associated with the drag called the
ballistic coefficient. During free-flight, the ballistic
coefficient is completely unobservable (meaning ‘it can not be
estimated from the data). The transiﬁion from free-flight to
reentry, where B is observable, is a gradual one with no

Clear cut demarcation; therefore, if one is using a Sequential
estimator to step through the data, there must be a way to
determine when this transition from free-flight to ballistic-
reentry-flight has occurred. In Chapter III of this report,

a method based on monitoring the root-mean-square (RMS) error

of the data residuals is presented for this purpose.

Report Organization

The remaining sections of this report describe in detail
the necessary calculations for the post-flight analysis of -
radar tracking data collected on a maneuvering reentry vehi-
cle. Chapter I1 presents the equations necessary for accu-
rately modeling the flight of a MaRV. These intclude the equa-
tions of motion, various transformations need, and models of
the earth's atmosphere and the RV's drag. In Chapter III,
the algorithm for estimating the trajectory and aerodynamic
parameters from the noise corrupted radar measurements is
developed. This starts with the basic weighted least squares

(WLS) estimator for nonlinear equations and shows how this is

related to the minimum variance (MV) and maximum likelihood
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(ML) estimators. A sequential estimator with and without

a priori covariance on the initial éonditions is presented.
A technique for adaptively switching from the free-flight
estimator to the BRV estimator, to the MaRV estimator is
given, and a method for determining close initial estimates
is suggested. Chapter IV discusses the numerical simulations
that went into developing and testing the computer program
which was developed. Two numerical examples are presented

in detail which demonstrate the operation of the program
using simulated data. Chapter V presents a brief summary
and suggests some areas where further study is required. Two
appendices are also included. Appendix A describes the
oblate spheroid which is used as the model of the geometric
shape of the earth. Appendix B defines the state transition
matrix and presents the equations used in deriving the par-

tial derivatives of the state transition matrix, and then

lists all the partials thus derived.
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I1 Trajectory Generation Eguations and Methods

This chapter presents the equations necessary for ac-
curately modeling the flight of a ballistic missile's MaRV.
These include the differential equations of motion and a
numerical integration scheme for propagating the MaRV's state
vector in time. Also included are the equations for trans-
forming the position of the MaRV in the computational co-
ordinate system, the one in which the equations of motion are
expressed and integrated, to radar range, azimuth, and eleva-
tion for a given radar station. This transformation will be
necessary for the least squares-differential correction
algorithm presented in Chapter I1I which compares the observed
radar measurements to the calculated radar measurements based
on an assumed or estimated state vector for the MaRV. Also
included in this chapter are models of the earths atmosphere

and the drag model for a class of sphere-cone shaped RV's.

-
.
“

Coordinate Systems and Transformations

A4
[

!

w

»
<

Several different coordinate systems are useful for
: expressing the trajectory and radar related equations. The
éi' most important ones are described in this section. The com-
:g putational coordinate system, the one in which the equations
Eg of motion are expressed and integrated, is the earth-centered-
&% inertial (ECI) cartesian coordinate system depicted in Figure II~
2! 'l. The origin of this coordinate system is at the center of
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FIG II-1  ECI COORDINATES AND RU-RADAR GEOMETRY
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the ellipsoidal earth model*; the X-Y plane is the equatorial
plane of the earth; and the Z-axis.is‘coincident with the
earth's axis of rotation. This coordinate system is fixed in
inertial space with the X-axis passing through the Greenwich
meridian at some arbitrarily chosen initialization time, tI'
For this analysis, ty is taken as the_time of the first radar
observation.

Figure II-1 also shows the radar-RV geometry. The
radar location is typically expressed in geographic coordi-
nates-geodetic latitude (gf), longitude (A), and height (h)
above the earth's surface. These coordinates are also con-
venient for displaying and plotting the RV's position as a
function of time. Figure II-2 identifies the geographic co-
ordinates of the radar station.

Two other coordinate systems which are useful in de-
Scribing the trajectory estimation problem are two radar co-
ordinate systems which are shown in Figure II-3. One is a
left-handed cartesian coordinate system (X,y,z) called the
north-east-up (NEU) system and the other is a spherical co-
ordinate system (R,Ag,E). The origin of these two coordinate
systems is the radar. The z-axis is along the local geodetic
vertical and azimuth an elevation are measured as shown in
the figure.

The final coordinate system to be described in this

section is the earth-centered-rotating (ECR) system. It

*See Appendix A for a descriptlon of the reference el-
lipsoid used to model the earth.
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differs from the ECI coordinate system only in that the XR-
axis always points out the Greenwich meridian. The ECI and
ECR coordinate are related by the following transformation at

any given time t;.

[ Xe Ccoslat)  sw(etd) ol X
YR -S//V(At’-n-) COS(At'ﬂ\ o y (11_1)
2
| Ze | . ° ° <]
vhere
At = ti-tI

1 is the earth's rotation rate and

XR, YR’ zR are coordinates in the ECR reference frame

The geographic coordinates (ff, A, h) are related to

8 the ECR coordinates by the following equations.

Xe = (R14)

[ Ye = (£ +4) Cosg s A (11-3)
é

E Z = (47‘h)5/ﬁ’¢ _ : (rx-4)
E\ 2 2 a )3-

: h=(e+Y%e +2") -1 (11-5)
::-:

l,: "

E‘ g = S,,y(z//') (I11-6)
t‘ ) Ao aw (Y / Xe) | - ar-m
: 15
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,; - 6/(/-e"c053'4 )i (I1-9)
where

& is the geocentric latitude
f; is the local radius of the earth
a is the semi-major axis of the ellipsoidal earth model

b is the semi-minor axis of the ellipsoidal earth model,

and
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e is the eccentricity of the elliésoidal earth model.

. e pe. TREAR 4 . . .

Equations (II-8) and (II-9) are derived in Appendix A. Appen-
dix A, which describes in detail the reference ellipsoid used
o tc model the shape of the earth, also gives the numerical
values of the constants a, b, and e.
The final transformation which will be necessary to

transform the ECI coordinates of the RV to radar observation

i& coordinates (R, Az, and E) is the following

:. . [~ ¢ ‘ P -1 r -
] % ~smwds CosA;  -siwgswis  cosd&s || XeXs
- 4| = |-sma cos A o Y,-Y,
q . 4 A _

® cosds cosd, cosq WA smwvés||L-1

whereqﬂg, Xs’ and h_ are the geographic coordinates of the

radar station (Fig II-2 ) and Xg» Yg and Z, are the

.
-
|
rJ
.;'




coordinates of the radar station in the ECR reference frame

i given by
X = (hs B, cos s cos A, (11-11)
Y5.= (/z,*/é’,)carg, SV g (I1-12)
 Zy= (4 "/33)5/4’4; (11-13)

where Lag is the radius of the earth at the radar station and

@, is the geocentric latitude of the radar station. ¢ and

» * 13
r.g are determined fromg  using (II-8) and (II-9).

Then

, .
= (2t 7"1» F)* (11-14)

o

Py

Ar= rmn'( /1) (11-15)

£ = 5%#%:Zﬂe)

AL
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(I1-16)

Free-Flight Equations of Motion

5
j

g; For a reentry vehicle, unpowered and still above the
EEI earth's atmosphere, the only significant force acting on it
2;? is that due to the earth's gravity. The acceleration due to
;s gravity is typically derived from the gravity potential.

ng Wolaver (Ref 38) shows that the earth's gravity potential,
2 U is a solution to Laplaces equation

Al
.
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x aY * 50 <0 (11-17)

The most general solution to Eq (II-17) for a unit mass ex-
terior to the earth is given as an infinite spherical harmonic
series which is a fthtion of r, the distance from the earth's

center; ¢, the geocentric latitude; and A, the longitude

V- S - L T Blag)asorly]  (ramie)

vhere,

p is the earth's mass times the universal gravity con-

stant
a is the mean equitorial radius

Pn(sinq), PNM (sing) are the Legendre polynomials and
JN' J M, ANM are constants determined from satellite data.,

Typically, some truncated form of Eq (II-18) is used for sat-
ellite and missile trajectory simulation and analysis depending
on the accuracy which is required., A particularly convenient
form is one which assumes the dependence on longitude to be

negligible. This truncated expression (Ref 5)

U =" [/-Z.Z,(;‘)%(mq\] - (11-19)

is called the zonal potential. The first four terms of the

zonal potential were used in this investigation to model the

18
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earth's gravity. Values of the constants used and the first

three Legendre polynomials are given below

g Plswg) = 05(3sm'-1) (11-20)
. 45(swg) = 0.5 W Q5 W'g-3) (11-21)
b

r

,. Plswg) = §(35 w'g-30 sw'q+3) (11-22)
: a®* ¢378135. m (11-23)
': = /082.6/6 110 (11-24)
& = -2.55x0" (11-25)
i

Jy *-/66 X010 (11-26)
:

‘ A = 398600.8 l/m'/u-." (11=27)

ata's

The zonal potential is considered sufficiently accurate for

5, the application being considerad here and the advantage is
that by setting

’ z

SN G « p (11-28)
y

it can be vritten completely in terms of the computational
coordinate system. This oliminates tho need tn transform from
: " A non~inertial system to the inertial system at each integra-

i
)

o tion step us would be required if the timo dependent terms
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vere retained. The disadvantage of using this potential func-
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tion is that the J,” term is neglected. The magnitude of the

Jzz term, which represents the Earth's equatorial ellipticity,
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has the same order as the J5 zonal harmonic and perturbs
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motion as much as any zonal harmonic except Jqye Thus for

)
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other applications, the potential represented by Eq (II-19)
may not give sufficient accuracy.
The acceleration due to gravity is given as the negative

of the gradient »f the potential function.
Z «-VU (11-29)

In the ECI referenca frame, the components of the accelera-

~

. R TN T3 A 1 L
N, SRR e

4

& A IEoR) JREIE1R)

; JO) §senhish)] 1o
: | >§-x,-,”f (11-31)
2y =]V 30-5R) -] (B 6ok 5 )

-vyL
L8

m

f

”l

A /&Y 704 - c5%)

£ #J\ﬁ)i(—/j-f OA ~65 (11-32)
~

o The RV state vector during free flight then contains the six
ﬂ elements of position and velocity

o

u

"

(11-33)
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;5 vhere the state at any time is determined by numerically in-

. tegrating Eqs (I1-30), (I1I1-31), and (II~-32) from some initial

(- ad

o state.

N

gg BRV_Equations of Motion

¢ Once the RV reenters the earth's atmosphere, somewhere
é: below 120 ‘km altitude, it begins to experience an additional
ﬂ: force due to aerodynamic drag. Even a ﬁaRV reenters along a
;' ballistic trajectory, so that for a portion of its flight the
'éj equations of motion of a MaRV are the same as those of a BRV.
t; The aerodynamic drag force acts opposite to the air relative
> velocity vector and is calculated as the product of three

g quantities: |

é' (1) the dynamic pressure, q
‘, P (i1) the nondimensional drag force coefficient, Cj and
LA (iii) a reference area, A

The dynamic pressure, g depends on the air density, p and

‘ the relative velocity between the RV and surrounding air,
éa v." in the following manner

o 5 f/o%_‘ | (11-34)

3 Choosing A as the cross sectional area of the RV and defining
2 the ballistic coefficient, B as

’d - .._”'/’4 (11-35)
L "1 this analysis, winds are assumed to be negligible,
e so that air relative velocity is velocity relative to the

rotating earth.
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where
m is the mass of the RV,

the acceleration due to the drag force is given by the vector

equation

A= —Z)Z’,— 8, - (I1-36)

where
Qv is the unit vector in the direction of v,
In the ECI reference frame, the components of the drag ac-

celeration are determined to be
Xe (11-37)

Za (I1-39)

7

Y, = —/%/—? Y, (11-38)
A
b

L[] . t'
where xa, Ya' and Za are the components of the air relative

velocity in the ECI reference frame given by

X, = X+QY (11-40)
51 = Y-0X (11-41)
4

) L . PR ke
¢ = [(x+ny) +(v-ﬂx) +Z] (11-42)

vhere X, Y, and Z are the components of the inertial velocity
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in the ECI coordinate system and X, Y, and Q are as previously
defined.

The total acceleration of the BRV is the sum of the
gravity acceleration and the drag acceleration. So the

equations of motion of the BRV in ECI coordinates are given as

%

s

.y _pk | . i}
X = 3 /g'z,?X‘ (11-43)

=~

A (11-44)

~1
N\
«n<i
\
R

Z= (11-45)

~N
|
Y
N

where Xg, Yg, and Zg are given by Egs (II-30), (II1-31), and
(11-32).

Although BRV flight is somewhat idealized in that there
is almost always some lift due to non-zero angle of attack or
asymmetric ablation, the net effect is usually assumed to be
negligible in the motion model of high performance ballistic

RV's. The state vector for the reentry of a ballistic RV is

X=(XYzZ,xY, z,8) © (11-46)

If the unintentional 1lift mentioned above becomes significant,
then the ballistic RV model must be modified and will be the

same as that of a MaRV.

MaRV Eguations of Motion

When the reentry vehicle undertakes a maneuver, a

third force, aerodynamic 1ift is introduced. The 1lift force
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is in a plane perpendicular to the air relative velocity.

One method which allows the 1ift acceleration to be formulated
in a manner similar to the drag acceleration is to decompose
the lift force into two orthogonal components., One component
is chosen to be in a direction whose unit vector, éT is given

as (see Fig 1I-4)

&
>
s

A -
&y =i (11-47)

<

The other component is chosen to be in a direction whose unit

A .
vector, ec 1S given as

é: =l‘\%l"ér . ' (11-48)

These two components of the l1ift force are called turn, FT and

climb, F.. Figure 1I-4 shows the geometry of the lift compo-

nents in relationship to V

Y. and the cdrag force, ED' With

these definitions, turn acceleration and climb acceleration

are given as

GAg
Ar =4 Cr | (11-49)
__CAz
A& -j ~ Ce (I1-50)
where
C; is the non-dimensional turn force coefficient, and
*

Cc is the non-dimensional climb force coefficient

To simplify the notation, two new terms are introduced, Cry
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the turn parameter, and Cc,the climb parameter, defined below

) '

R A .

| C - gz__ . (11-51)
\ _

! GA '

The ECI components of the turn and climb accelerations may

then be written as

K, = plc

(11-53)

o ’ G-X2Z
v ,:/;{GE."_;_—_)— (11-54)

| z /o ”G(X_ﬁ_ YX) (11-55)

g X - fayc‘[ﬁ(” V&) = Z (2%, ‘XZ)7 (11-56)
7 /
§. = plic: [2<vz‘-zz> ~ XX, VALY (11-57)
| 7 J
Zem ple [ (m xz) fulyz- zg] (11-58)
vhere
7= [(‘/Z (ZX 'XZ) (x%- ZX.)J (11~59)

Now all the equations necessary for representing the

equations of motion of the MaRV completely in the computa-

tional-ECI reference frame have been given. 1In some cases
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the accelerations have been expressed in terms of air rela-
tive coordinates because of the conyeﬁience of notationj;
hovever, in those cases, expressions relating the air rela-
tive coordinates to inertial coordinates have been given.
Symbolically then, the equations of motion for & MaRV in the

ECI reference frame are given as

)'( = x? ”'-x.p + SZ,- +).(.c (11-60)

‘Y.:' %*yp*7r+yn (11-61)

Z= f, 12,4247, (11-62)
vhere ig' ;;' and 5; are given by Egqs (II1-30), (I1-31), and
(11-32); §5. §L, and %D are given by Eqs (11-37), (11-38), and
(11-39); X.., Y. Z,

T YT' and ZT are given by Egs (11-53), (I1I-54), and

(I1-55); and kc' Y., and Zc are given by Eqs (1I-56), (11-57),

Numerical Integration of Egquatjons of Motion
The equations of motion given by Egs (1T7-60), (II-61)

and (I11-62) represent a system of coupled, second order, non-
linear ordinary differential equations which cannot be solved
in closed form. They must be numerically integrated from
some initial conditions on X, Y, 2, i, &, and é to give the
positionland velocity at any other time. A numerical inte-

gration scheme which is used extensively in ballistic missile

trajectory simulation and estimation is a fourth-order

27
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Runge-Kutta method modified by Nystram to handle the second
order equation. Kreyszig (Ref 21) calls this the Runge-
Kutta-Nystrdém method. Its popularity for propagating the
state of a ballistic missile is due to the fact that it is
self starting; it has small round off error for small stcg
size; the step sizeimay be varied at will from step to step;
and it is straightforward to implement. The following de-
scription follows essentially that of (Ref 33).

Let the equations of motion given in the previous sec-

tion be represented by the functional relationship

L=férr) (11-63) :

where
r-. 7 r 7] ~ 7]
X X X
[ = , L =Y ) r=ly (11-64)
yA b4 z
L . L

Furthermore, iet r(t) denote the solution of Eq (II-63)

corresponding to the initial conditions g(to) = and

o
r(t. ) = r_ . Let r. and r. denote approximations to i (t.)
clty) = L E; PP £(ey)

and £(tj) and set h = t ~t .. To obtain the approximations

J*1 7]
£j+1 and £j+1 we calculate as follows ;
K = /Ifé.ﬂ._/}) (11-65)

28
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yi . .
A’;"”f(é‘*z>{,’-*f—lj4§—:,g+f_,.) (11-67)
&.—.Af(fjfb,{}’fﬁ_[}-fg—__/_{’ ’j} +_/_(5) (11-68)
After the above are computed, the new values £j+1 and i.+1
are then obtained as
_{},, ‘—‘__/j' *ﬁ/ﬁ +gl'(£(, +K, +_/{,27 (1I-69)
s / i
_fjﬁ —4- + ZL/(, fz_/_(z +Z./.(3 +_/_(4] (11-70)

Thus, starting with £, and L, as known guantities the inte-
gration subroutine which consists basically of Egs (11-65)
through (11-70), repeats itself cyclically until as many

steps, h as may be desired have been completed.

Drag Models

As Athans (Ref 3) states, the ballistic coefficient is
an important pa.ameter for several reasons. This.parameter
physically represents the ratio between the mass of the RV
and the effective drag area along the velocity vector. Thus,
Knowledge of this coefficient reveals some telltale charac-
teristics about the missile. In addition, an accurate 8-

estimate generally imposes a more stringent requirement than
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do other criteria on the estimator performance and, therefore,
offers to us a convenient method of evaluating estimator ac-
curacy or comparing estimator results.

The ballistic coefficient given in Eq (II-35)

£= “©“ i | | (11-35)

is not a constant because the drag coefficient, C. varies

D
with Mach number for an RV of given geometric shape. For
sphere-cone RV's, CD is parameterized as functions of the
vehicle half-cone angle, bluntness-ratio {radius of nose/
radius of base); and Mach number. A series of unpublished
tables from wind tunnel test of sphere-cone RV's is stored
internal to the program and the user supplies an estimate of
the half cone angle and bluntness ratio. Figure II-5 shows
the theoretical drag curve reproduced from Ref (35) for a 6°
half-cone-angle, 0.21-bluntness-ratio, sphere-cone RV,

Since tables don't lend themselves readily to analytic
differentiation, an analytic expression for drag is needed

for the partials necessary in the differential correction

process. The drag model used for this purpose is (Ref 34)
Cp £ +!_" 4_{.1“ (11-71)

vhere M is Mach Number and kl, k2 and K3 are related to the

RV half-cone angle and bluntness ratio and are determined

from least squares fits of the drag tables to Eq (II-71).
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.Although Eq (II-71) doesn't represent all Mach Numbers shown

in Fig 1I-5, it represents quitea adeqdately the region in

R ‘
which ve are interested, down to about Mach 3. i
Models of the Atmosrhere ]
Models of the atmospheric density and temperature are %
B , . . , 73
required for accurate trajectory simulation and estimation. ]
The density is required for calculating the dynamic pressure,
and temperature is requirad for Mach number calculation. 1
' ' ]
2 .
j_._. 7'/0%“ (11-34) - . |
e .K..(’Z‘&l (11-73)
2/r, lermp(*K)
The importance of accurate density information for accurate

3 calculation is seen by the fact that a percent error in
density transforms direct!  into a percent error in § owing

to the linear relationship between B and/o

, 2
%, ‘aL. K | (11-74)
[As] _

Thus, the program provides for the input of the local density
and temperature tables as functions of altitude. In addition,
for simulation purposes, tables from the 1962 U,S. Standard
Atmosphere, are stored internal to the program. Again,

*For ICEBM ranges, a high porf)tmance RV (B>7000kg/h )
impacts about Mach 3.
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hovever, tables don't lend themselves to analytic differentia-~
tion. Thus, an analytic expression for density is required.
The density model which i{s used for the partials needed in

the differential correction process is (Ref 7)
/ 'ﬁ e'l.dk 7 | (11=-75)

vhere

/oc = (1.226kq/m3) the atmospheric donsity at h = 0
e = the constant 2,7182818

s.h., = the scale height (~ 7000m)
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II1 The Estimator Equations

In the previous chapter, equations vere givon for prop-
agating the state of a MaRv forward” in time. These vere ex-
pressed in terms of the differential equations of motion
along with an algorithm for numoriéally integrating the
equations of motion. Additional aguations were given for
transforming the position of the RV at any time, t, from ECI
coordinates, (xi, Yy zi) to spherical radar coordinates,
(Rys Amyy Ey),

In this chapter, equations for estimating the state of
& MaRV at some epoch time, t,, based on the observed radar
measurements and the equatione given in the previous chapter,
are given. These estimator equations are based on the clas-
sical method of veighted least-squares, vhich is generally
agreed to have been invented first by OCauss for his astronom-
ical studies in 1795, He was 18 years 01d at the time,

There are tvo others, legendre in France in 1808 and Adrain

of Amarioca in 1408, vho i{ndependently developed the method.
Since these ourly times, there has been a vast literature on
various aspects of the least-squares method just as Gauss pre-
dicted there would be, For detuils of the very interesting

'Tho equationms given will allov for the propagation to
be forwvard or backward in time with equa! eoase; howover, all
PfOplgltionl of the atate in thim report will be forwvard in
time.
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history of estimation theory, the reader is referred to the
excellent survey papers listed in Refs (19) and (30) in the
bibliography. |

The basic weighted-least-squares differential correc-
tion Procedure is developed first. Then the relationship bhe-
tveen WLS estimation and minimum variance and maximum likeli-
‘hood estimation is discussed. The estimator with and without
apriori statistics is described. Sequential éstimation and
an algorithm for deciding when to switch to a higher order
estimator are discussed. A method for obtaining initial con-

ditions is also suggested.

Weighted Least-Squares Differential Correction

The method of least squares is concernéd with estima-
ting the values of a set of parameters of the measurement
model, which relates the measurements to the parameters, by
minimizing the sum of the squares of the residuals. The
residuals are defined to be the differences between the ob-
served measurements and the corresponding measurements com-
puted from the mathematical model using some set of estimates
of the parameters. The set of estimates which renders the
sum of squared residuals a minimum is said tu be optimal in
the least-squares sense. To put this in terms of the.problem
at hand, the observed measurements are the ranges, azimuths,
and elevations from the tracking data and the corresponding
computed measurements are determined from the equations in

Chapter II. That is to say that the equations of Chapter II

constitute our measurement model. The parameters we want to




estimate are the RV state variables at some fixed time, to

called the epoch time. If we let the vector 2; represent
the set of observed measurements of range, azimuth, and
elevation at any given time, t.s (ti > to) the measurement

model may be represented notationally as

3i =5, (X, L)+E iy, m (111-1)

where

n = the total number of measurement times

&o = the true (but unknown) RV state vector at epoch
h, = the vector of nonlinear functions relating X, to z;
€, = the vector of errors in the observed measurements

at ti

In component form, the meas;rement»model is given as
Ko; = K (X, 1) +&r; (111-2)
Az,; = Az;(xo,z‘,,) +a; (111-3)
Lo = £;(X, L) + &, | | . (111-4)

where eRi’ €Ai’ and GEi

azimuth, and elevation respectively at ty and the o sub-

are the measurement errors in range,

script on Roi' Az and E_. is to identify them as the ob-

oi’
served values at ti.
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The most general state vector for a MaRV contains nine
elements-three pnsitions elements, three velocity elements,
and three aerodynamic parameters. Thus, the state vector at

epoch may be given as

-X" G(X‘J X, Z’) x"°) Y, .Z»A,Cr? Cg) (111-5)

.his would represent the MaRV during maneuvering provided Cp
and C. are not zero. Ballistic~-flight is modeled by setting
Cp and C_ to zero and free-flight is modeled by setting L/BO,
CT’ and Cc to zero.

The set of eguations given by Egs (III-2) - (III-4)
are the observation equations. If they were linear, we could
take any £ of them and solve for the unknowns, where £ is
the number of unknown state variables (i.e., £ = 6, 7, or 9).
(Here we have assumed that £ 2 3 n ) The problem is the non-
linearity of the observation equations. There is no direct
method for simultaneously solving a set of nonlinear equa-
tions; therefore, an iterative approach must be taken. The
iterative approach when applied to the least-squares observa-
tion equations is typically called differential correction.
If consists of "linearizing"” Eq (III-1) by expanding it in a
Taylor's series about some initial guess or estimate of Ko’
truncating it by ignoring all terms of order two or higher;
and sclving for the resulting differentials which minimize
the sum of the squared residuals determitied from using the

initial estimate. This optimal set o: & fferentials is then
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added to the initial estimate to form a better estimate, and
the process is repeated until some convergence criterion is
met (e.g., all of the differentials become essg-tially zero).
This is explained in more detail in what follo¥s where the
weighted~least-squares estimate is derived.

: A

Let X  be an estimate of X , then the Taylor's series

expansion of Eqs (III-2) - (III-4) are given as

6,‘. - K ~,€.(g.'f.) - %—'}%\%‘ + A8l (I111-6)
Y ¥4
~ Az'
64:' ‘Azoj '-A‘I'(-X-.,to) -%J ax +i.0-.£ (111-7)
A = sk
~ RE,
éﬁ =15y"£;<xo,£c).- 5_: 21 4‘Zi‘kl£ .
T 08, (I11-8)

vhere the vector of differentials, 4X for the free-flight

case is given as

x. -

>0
|

N
v '
M 5o

(I11-9)

%
"

®
\
<

:<».
\
LY :<‘)

-1,
. L
The partials of range, azimuth, and elevation with respect to

the state vector X, given in Egs (III-6) - (IIf{-8) are

38
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ﬁ evaluated using the current estimate, X, and are defined by
ﬁ iﬁ; the following matrix equation .

\ (8] (8 2 % & ® «®]

L. w Bow RO L

3 b; _ oA | - | M M W 2

"' X | ] T ke W . K 74% %_&. . (1I1-10)
N ‘ :

3 £ £ £ K

3 | X% |, [% W % % 22%._‘5

b The set of equations given by Egs (III~6) -~ (III-8) when the
! higher order terms are neglected is a set of linear equations
in the unknowns 4X. It is to this set of equations that we
apply the principle of least-squares. First we make the

. notationally simplifying definitions

C 7
é‘(fﬂlé“ueﬂ)é‘ué“z»é‘z; Tty e‘u, 64.«, él..) (II1-11)

o [ 1

3
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(111-13)

With the above definitions, the linearized observation equa-

tions can be rewritten as

: é v - Hax - (I11-14)

Some of the residuals of BEq (III-14) are in terms of range
units and some ire in terms of angle units; and even though
the range measurements are more accurate than the angle meas-
urements, the numerical values of the range residuals (in
maeters) will most certainly be larger'than the angle residuals
(in degrees). This forces us to apply weights to the observa-
tions to normalize the residuals so that all are given sgual
consideration, Or we might want to apply vweights even if all
the obse«rvations vere of one type (say range) to give more
accurate observations greater influence and less accurate
ooservations less influence. Assuming ve may want to assign

a distinct weight to each observation we define

1th

Whi n vaight applied to the range observation

wAi v wveight applied to the ith azimuth observation
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wEi = wveight applied to the ith;elevation observation
and . | |
W” = the 3n-by-3n diagonal weighting matrix whose
diagonal elementﬁ are Whi, wAi’ wEi’ i =1,2,...n.
With the above definitions, the weighted observation equa-
tions 'are given by premultiplying Eq (III-14) by W%.

£, - WEY -WHax

(I11-15)

vhere the subscript W on §,is to indicate that this is the

veighted error function.

Applying the pt;nciple of least squares to Eq (III-15) we

obtain the sum of the squared residuals to be.

f:f,.. * (Wt,l/" W*H.él)r(h/ty-h/*/-/é_x) (I11-16)

Taking the partials of the above scalar function with respect
to 40X gives

r

bgaﬁxﬁ) = "Z(W‘_Y"Wtﬁ_‘;x)rwt/?’ (111-17)
C ]

Setting Eq (III~17) to zero, transposing and solving for AX

results in the standard weighted-least-squares estinate

r

AX = (H WH)IHTWV (I11-18)




Vvhere

wre wat | | (I1I-19)

Had the Eq (II1-2) - (LII-4) been linear, the optimal least-
squares estimate of go would be given by adding the AX de-

X A
termined from Eq (I1I-18) to the initial estimate, X .

24
'As it is, however, since the observation equations are not
linear, the optimal estimate must be determined in stages by
adding the differential, AX determined from Eq (III-18) at
each stage to the current estimate, §° and iterating the above
equation until the process converges to the optimal weighted-
least-squares estimate.
In algorithm form the weighted-least-squares-differential-
correction method may be summarized by the following steps:
1. Somehow determine initial estimates, go for all of

the unknown parameters (e.g. see page 54).

A A
fi 2. Using the eitlmate, &O, propogate go in time

s (integrate 30) to the time of each observation and

evaluate V and H,.

. s .
KRR
.’

oy 3. Determine AX from Eq (III-18).

= A

> 4. Add &X to X _ to form a better estimate
.

’3 A A

v .x—oh Ko + g

5. Return to Step 2, and repeat Setps 2-4 checking for

*
convergence after Step 4 of each iteration.

SR P AL

l"'n.n
EAF A r

*As given on page 38,

'y %9 "
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6. At convergence the optimal least-squares estimate
is go. (Notg: no notation distinction is made be-
tween the converged estimate and the initial est-
mate, Qo)

In step 4 theé&=denotes replacement or writing over.

The above procedure converges quite rapidly (< 4 itera-
tions) for good initial estimates. With poor initial esti-
mates, the above procedure may not converge at all. In fact,

it will most likely diverge. A technique for determining

good initial estimates is given later in this chapter.

Minimum Variance and Maximum Likelihood Estimation

The weigh£ed-least-squares estimator developed in the
preyious section was done so from purely "reaéonableness"
arguments. No knowledge of the underlying probability dis-
tributions of the observation errors (GR, €A, €E) was re-
guired and none was used. Weights were assigned in a some-
what arbitrary manner where it seems reasonable that more
accurate measurements should receive nore weight than less
accurate measurements. As a result nothing can be said about
the accuracy of the WLS estimate. Clearly from Eq (III-18),
the least squares estimate is a function of W. Therefore, it
appears that there may be an "op:timal” W to use in the least-
squares estimator. Junkins (Ref 18) shows that if the opti-

A

mality criterion is to determine the estimate X, with mini-

mum covariance matrix, then W should be the inverse of the

covariance matrix of the observation errors. When the

weighting matrix is so defined, the least-squares estimator,

43
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in the linear case, is called the minimum variance (MV)
estimator. Defining @ as the covariance of the observation

A
errors and P 2 . the covariance of X,s the first order approx-

imation to a MV estimator for our nonlinear problem is

given as |
4x,* (//@"H)-IHTQ'[ . (111-20)
r = (/'/EP"H)" (I11-21)
A

where X  is determined exactly as in Steps 1-6 of the previous
qection with W now replaced bngd'and P is determined using
the converged 20. Since P of Eq (III-7") is only a first-
order approximation of the covariance matrix, it may, for
very nonlinear problems, be a poor estimate of the errors in
g. Therefore, Monte Carlo simulations are usually required
to validate the covariance matrix. This is discussed more
fully in Chapter IV,

Since the diagnnal elements of the covariance matrix,
P are the mean squared errors of the individual state vari-
ables, the MV estimator given by Egs (III-20) and (III-21) is
ndmetimel refaerred to as the minimum mean square (MMSE) esti-
mator. Saee Liebelt (Ref 23). It is also (Ref 32) called
the Markov estimator.

Another assumption, which is almost always made in

actual application, is that the observation errors are

Gaussian distributed with zero mean. Using this assumption,
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Wiesel (Ref 36) develops the maximum likelihood (ML) esti-
mator which is identical to Egqs (III-20) and (III-21) where

(Q is now the covariance of the normal distribution of the

-observation errors. For ML estimation, see also (Ref 16,18,24).

Another assumption which was made in developing the
estimator for this dpplication is that the observational
errors are not correlated in time nor spatially. This is
not strictly true spatially since the radar doesn't make
its measurements in range, azimuth, and elevation but in-
stead transforms '"raw' measurements into range, azimuth, and
elevation. In addition, if the measurements are from a
moving sensor which has been transformed to a fixed location,
then the errors are correlated in time. The .effect of this
approximation is to make @ a diagonal matrix with the error
variances on the diagonal. Considerable storage and calcula-
tions can be saved if the error variances are identical

from time to time, i.e.,

q;: = q‘; (II1-22)

G'AZ = UA’} (I11-23)

0,_-‘; = 0,,5 (111-24)

for any two times, t. and t, where O ?, g ?, and © 2 are the
1 J Ra Al Ei

variances in range, azimuth and elevation at t;. This being

'the case, the 3n~by-3n covariance matrix,c? can be represented
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by three scalars, Ogr 9 and Og Tpe GR, Ops and OE used
in the numerical examples to validate the estimator equations

and the programming are given in Table I-1 of Chapter I.

A Priori Statistics

It was mentioned earlier that good initial estimates

of the unknown state parameters are required for the differ-

ential correction process to converge. 'If in addition,
statistics for the initial estimates are also known the esti-

mator is modified to reflect these a priori statist’ s (Ref 2)

as
. =/ - i Tr . - ‘
ax = (B+H §HIH QY ~ (111-25)
» -/ T ot
P=(8+H QH) (I11-26)
. A
where Po is the covariance of the initial estimate, §°.

The Sequential Estimator

The weighted-least-squares estimator developed in the
preceding sections assumed a deterministic system model

vhere the system model is given as

..x: =f(xl Y, Z, )'(,)'/)2,/4, Cr,cc, t) (111-27)

Another way of saying this is, if the unknown state variables

were known, we could propagate the state forward in time

perfectly. That would imply the models for gravi.,, drag,

. . At PSRRI
ats T2t aTats teTat et Te te el
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and 1ift given in Chapter II are exact, Whereas no model
is ever perfect, some are very nearly so such that determin-

istic least squares vorks exceptionally vell. A case in

‘point is the missile in free-flight where tho only force
acting is gravity. Gravity can be modeled with sufficient

accuracy, and is in this algorithm, that all of the free-
flight data can be processed limultln‘oully in a single batch
using the six-state estimator given previously. On the other
hand, the drag model for an RV is not so vell known, and the
lift model is even less vell known. This motivates us to
seek an astimator for the reentry flight regime ¢to process
the data sequentially, a small batch at a time. The sire of
tho batch, specified by the number of time points, should, as
a general rule, be the largest over vhich the model may be
considered perfect (sufficiently accurate). This number
varies with altitude, ac.nwracy of the observation data, ete.
and no attempt was made in this research to determine the
optimur batch sige. Instead the user 0of the program is al-
loved to specify the batch size anyvhere from one point'to
all the data, Examples will bs given in Chapter 1IV.

The sequential) estimator which was developed for this
problem is based on gs (111-25) and (111-26) and an addi-
tional equation for propagating the covariance in time (Ref 13).

Plt,) = Pbm, t‘/)/:’(t‘/)ﬁ(t‘m,t/)r (111-28)

A’
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The sequential estimator vhich vas implemented is similar to

that suggested by Barker (Ref 4) and is outlined in the fol-

loving steps

i,

2,

4.

The number of points in batch one (NPD:') is
specified, und the initial estimates, 801 and P,y
are dotermined. (The subscript, 1 refers to the
batch number).

The WLS differential correction algorithm (steps
2-5) given previously is iterated until convergence
is achieved using Bq (1I1-29%) instead of (11I1-18),

40.0,

ax, = (B4 ﬁ'Q"H).If/’Q"_L/ (111-29)

After step 2 has gonverged, update the covariance
using Bq (I11-26)

P (R HEH)" (111-30)
Propagate the optimal estimate, determined for
batch one, £°1 and the covariarce Py to the time of
the naxt epoch, (Generally speaking the epoch is
advanced one time interval but. this is selected by
the user by specifying the number of points

.Progrum {nput

49
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ii between epochs one and two, NPBE12")

" 2., =X, + X.dt‘ (111-31)
.a'- 5

: ,

i E,'-’(fuf:)ff(ﬁutz) (111-32)
ﬁ (The number of points in batch two and succeeding
" batches is specified separately as NPBAl* so that
! batch one may incorporate all of the free flight
%)

N data if desired)

~l

o 5, Again the WLS differential correction algorithm is

iterated until the optimal estimate of X ., is con-

02
verged upon.

o

L

[ | A
i 6, After stop 5 has converged, the covariance of X X2
i

QE? is updated by

- B = (B +HGHY (111-33

: A .
7. Propagate the optimal state estimate, 102 and co-

variance P, to the time of the next epoch where
the time of the next epoch is specified by the

number of points between opochs, NPBE" . (NPBE and

" s s & AV .

NPBE12 are specified separately again so that batch

- —

one may be treated separately).

o *Program input, NPBE12 < NPB1 and NPBE < NPBAI
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8. Repeat steps 5 and 6 for batch 3.

9. This propogate-update cycie is repeated for sub-
sequent batches until the final data point is in-
clud2d in a batch.

10. Once the final point is included in a batch, the
batch size is gradually collapsed to a single data
point., '

Thus, the sequential; weighted-least-squares estimator is

controlled by four inputs NPB1, NPBE12, NPBAl and NPBE

vhere
NPB1 = number of points in batch one
NPB12 = number of time intervals between epochs one
and twvo
NPBAl = number of points in all batches after one
NPBE = number of time intervals between succeeding

batches
When NPB1 is set to 3n or greater, all of the data are pro-
cessed simul.aneously in a single batch, When NPBl and NPBAl
are both set to one and the differential correction algorithm
is not iterated (MAXIT = 0), the equations make up one form

of the Kalman filter (see Ref z4).

Finite Memory Estimator

Experience gained in developing the estimator, indicates
that for data simulated as indicated in Table I if the batch

sizes are 50 points or greater, then no a priori statistics

1

are needed (i.e., P;i = 0, all i). On the other hand, when

~° ]

. - 'y DSOS - 4 S 0y . » ' - -
4 _ppatec il -z d3c ciewrs zec.giide dbalea ol R A W0 e o e At A M et N,



’ A

[ 2ok ot
o

bl 3

e
o

R

R
L34

' Bl
.
- g

.
» o -

cseveamy
A k]
2 al e

7 .

IR 40

.4

.

&

NARIRS LNy

FFTYPSEERY  FO N PORI STy DR DR

..

- L.t

"
VA

€:

the batch size is sufficiently small that the normal matrix,
(HquIH) is ill-conditioned or singplér, a priori statistics
are required. In this small batch size applications, it

has been found that with the infinite memory estimator given

above which includes Eq (II1-26), that the covariance matrix
o Tl g\~ '
P=(P+H'QH) (I11-33)

becomes indefinite as the batch number, i becomes larger. To
*

prevent this from happening, a technique described by others

was implemented to deweight the a priori covariance. This

results in modifying Eq III-33 as
-/ 7=l 4 s\~
Pe(cP'+HQ H) (111-34)

vhere C is a diagonal matrix (Barker used a scalar) whose
diagonal elements C,;; are between zero and one. Many simula-
tions were run to determine a C to keep P, positive definite.
No conclusions can be drawn but it Seems that the larger the
batch size, the smaller C must be. Small batch sizes re-
quired Cii > .8, One way to avoid this problem would be to
use large batch size (NPBAl 2 50) and set C;, = O and this
appears to work fine for ballistic flight; however, if the
MaRV undergoes some high-g maneuvers, small batch sizes would

be necessary as the coefficients of turn, C, and climb, Co

T
are modeled as constant over the batch time interval. The

case of high-g maneuvering was not investigated in this study.

*This deweighting accompiished in various ways. See
(Ref 4,16,14), 51
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%é - Adaptively Increasing the Estimator Order

?E i As has been mentioned previously, during free-flight,

e the estimator is a six-state estimator corresponding to the

%: six elements of the free-flight state vector, (X,Y,Z,i,§,é)T.

:% In thg sequential mode, as the estimator is stepping through

!! the data, there is a point after which the free-flight esti-

iﬁ mator is no longer adeqguate. This is a result of the slow-

S down of the RV due to drag making the free-flight equations

!! no longer adequate for modeling the RV's motion. At this

%3 time, we want to switch to the seven-state BRV estimator de-

?; fined by the BRV state vector (X,Y,Z,i,i,é,fﬁ)r . However,
this point is not well defined a priori. If we switch to

3 the seven-state estimator too soon (i.e., before the ballis-

?; tic coefficient becomes observable), then the normal matrix,

! e (HTq’lﬂ) will be singular, and therefore not invertible.

S

X

;Q penalty for switching late is not so great. It will just

R mean that for a period of time, the RV motion is modeled in-
S? accurately. This inaccurate modeling of the RV motion will
Ez lead to larger than expected residuals. This divergence of
5 the residuals is what is used to determine when to switch to
Eg the higher order estimator. This is accomplished by keeping
E track of what is called the total root mean square, (RMST)

This condition will lead to the estimator failing. The

. *
error of the range residuals

RCMARCATS

g
-

-
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e
"
)
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.
..
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w
N
o)
..
»
-
i
—

*
Originally azimuth and elevation RMS's were also used
but too many false switches occurred.. See Example 2 Chapter IV.

52
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(I11-35)

where

th

the i~ range residual

oiReci

-4
"

the total number of range observations which
have been processed at any given time
For N greater than 30, the RMST should be very nearly equal

to the standard deviation of the normal distribution of the

ar oo - -

range errors, which for the simulated data is five meters.

A long free-flight track is useful in determining a good

value of the RMST.

The RMST is used to detect divergence by comparing it

to the range RMS for any batch. Call the range RMS calcu-
Fom lated from a single given batch the BRMS. In the limit,

BRMS, -RMST, should be less than 2RSTDy with a probability of

about .95, so if

BEMS, - RMST, ) 4 RS7D,, (117-3€)

then divergence has occurred and the switch is made, where

RSTD is a measure of the dispersion of the BRMS's defined as

RS72), -1,@'(5\’"’-’:;@’57)’ (111-37)

vhere K is the number of batches processed thus far. The
check is not made until K is greater than four to allow time

for "settling” of RSTD. The value four is arbitrary.
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Onc» the switch from the six-state estimator to the

seven~-state estimato>r has heen made, the last batch is re-

processed with the higher order est.imator, and then the same

~dogic is used to detect the onset of maneuvering. If a man-

euver is detected, the program switches to the nine-state

estimator given by the MarV state vector, (x.v,z,x,Y.z,a,cch)T.

Initial conditions

Good initial ccnditions for the state variables are
required for the differential correction process to converge.
The state varlables, £, CT' and cc are not #0 critical and a
rough guess is sufficient, e.g., B = 7000 kg/hz. Cp = 0 and
cé = 0, On thu other hand, the position and velocity -
initial conditions are very critical and there is no wvay to
guess them, Thus a routine vas written to determine initial
est.imates as follows

1. The range, azimuth, and ciovntion measurements are

transformed into ECI X, Y, and 2,
2. The ECI coordinates are fit in a least-squares sense

th

to a special 47" order polynomial in time (given

here only the X coordinate)

Xiea, vazi-t) +ay,(4 -¢fe a.(t;-t,fva, d."t‘,)', (111-38)

" L4 /)',“"M

vhere 2y, 8, and ag are first determined from

ﬁﬂ 8 2a8y26a,(¢-2) + /34,(t,-¢,f, I8, m (I11-39)




where Xgi is determined from the gravity subroutine

using the raw X,Y,Z coordinates.

3. Once the a's have been determined, the fourth order

polynomial is differentiated to determine velocity.
» ’

b, ' : If all the data are free-flight, the above procedure

. _works exceptionally well resulting in convergence of the dif-

ferential correction algorithm in one or two iterations. It

ALt

also works very well with data which includes reentry pro-

vided a substantial portion is free flight. If all the data

-y

U o« s
o R A )

--. n‘-
g =N

B

RSN

are reentry, better initial conditions are provided by ig-
noring the second-order polynomial constraint on a3, a, and

ag given in step 2 i.e., Eq (I11-39).

' ] 13 . (3 » . [ .

This technique for determining initial position and
velocity was developed by the author originally for program
TEAP, a program used at FTD for fitting free-flight data.
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IV Numerical Eiamgles

Many numerical simulations were run to validate the
estimator equations and the programming of them. The pro-
gram was designed in stages with each stage beihg checked for
accuracy before proceeding to the next stage. The first
stage consisted of the free-flight equations of motion with
the batch WLS estimator equations. Numerical partials were
generated to check the accuracy of the analytic partials
used in the estimator equations. Subsequent stages included
the BRV equations of motion, the sequential estimator equa-
tions, and finally the MaRV equatinns of motion with the re-
quired partials. Numerical partials were simulated for each
stage to test the accuracy of the analytic partials. These
tests verified the fact that the simplified equations of
motions used for the partials calculations were of suffi-
cient accuracy.

Once the program was completed, many more simulations
were run, and refinements and modifications were made where
necessary. The results of several of these have peen al-
luded to in previous chapters. It was found, for instance,
that the a priori covariance matrix had to be deweighted to
maintain positive variances as output of the estimator equa-
tions. Simulations showed that the deweighting had to be
increased as the batch size increased. Because of the time

involved in tuning the estimator equations for various batch
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sizes, no conclusion can be reached as to how best to use
the a priori covariance information., It was determined,
however, that for batch sizes of 10 or more points no
a priori covariance was necessary to keep HqQ'IH positive

definite. As a result, the numerical simulations discussed

o in the remainder of this chapter were run with no a priori
b covariance.

Two numerical examples are presented in detail in the

remainder of this chapter. The first discusses the opera-

e,
R

tion of the estimator in the batch WLS mode where all data

e

B AR AR
",

are fit simultaneously. The second example discusses the

]

i

results of running the estimator in the sequential mode. A

O TS

ten run Monte Carl, simulation was performed for each of the

[
Pelsat e

2o

twvo examples.

Aﬂ Example One - The Batch Estimator

The purpose of this example was twofold, (1) to verify
the accuracy of the models used in the program and (2) to
look at the accuracy that could be attained when using the
estimator in the batch WLS mode where all the data are fit
simultaneously. This mode represents the ultimate in the
accuracy vhich can be attained from radar data of a given
accuracy and is applicable to the RV in free-flight and to

the RV for ballistic reentry. 1In order to accomplish the

first goal, the data used in this example were simulated
using the Foreign Technology Division's MRVRAP program - a

i '~ program which has been tested and proven . be accurat« for
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simulating the flight of a ballistic RV. Ten sets of simu-
lated radar tracking data were gene;afed. Each set of data
was corrupted by random noise from normal distributions having
zero means and standard deviations of 5 m, 0.015 deg, and
0.020 deg for range, azimuth, and elevation, respectively.

The errors in the data were determined from a random number
generator by specifying the "SEED"’ The SEED was specified
to be different for each data set, so that, even ‘though the
errcrs for each set were from the same three normal distribu-
tions, the samples wer. different for each.

Data for this first examp.e were simulated for a
ballistic RV having a hypersonic ballistic coefficient of
3300 kg/sq m. The ballistic coefficient was modeled to vary
with Mach number as discussed in Chapter II. Figure IV-1 is
a plot of normalized ballis;ic coefficient, drag acceleration,
air relative velocity and altitude plotted versus time from
120 xm to impact to show how these parameters are related to
one another through out reentry. Epoch was defined to be at
raentry (120 km altitude) and only the data from reentry to
impact were considered. Figure IV-2 is a plot of one sample
of the tracking data used. The parameters have been normal-
ized so as to be able to display them on a single graph.

Ten points per second were simulated for a total of 500 data
points.

All of the data in each set were fit simultanecusly
solving for the nine elements of the MaRV state vector. The

initial conditions for the position and velocity states were

w
The SEED is just a starting value for the random
number generatocs. =
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determined automatically by the program as described in
Chapter 1II) B, vas initialized at §oo‘kg/bq m and both Co
and C, vere initialized at 0.0,

Since the data for this example vere generated from
known conditions, the parformance of the estimator can be
judged by howv well the estimated parameters match the true
state parameters, Table IV-1 is a 1ist of the resuits from
the ten simulations. In the upper left block of Table 1V-l
are given the true errors in the state estimates (ﬁo-;> for
the ten runs. The lust rows of Table IV=1 give the means
and standard deviations for the ten run sample. The last
three rows of the tablo, give the standard deviations of the
range residuais, Og- Al) runs converged in three iterations.
Table IV-2 contains the standard deviation-correlation coef-
ficlent matrix from onée of thae single sample runs. £ince
this matrix is symmetric, only the lover triangular form i»
given. This matrix ie determined from the estimator co-
variance matrix, (H%Q'IH)'I. The diagonal elements are the
standard deviations, Comparing the stundard deviaticne from
Table IV~-2 with the last column of Tsble 1V=1 shows a very
good agroement, ,

Another indication as to hov vell the model agreos
vith the data is given by plotting the reasiduals. ¥igure
1V-3 im a plot of the rango, azimuth, and elevation rasidunls
from one of the single sampla runs, The absoence of truend in
the renjduals indicates that tho data huve buren mode)ed

correctly and accurataly.
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Example Two - The Sequential Estimator

This example was designed to show how the sequential
mode of the estimator operated as the number of points per
“batch was varied. Three specific things were of interesti
(1) how the estimappr switching algorithm operated as
the numbef of points per batch was varied,
(2) how the accuracy in the estimated parameters
varied with the number of points per batch, and
(3) how well the estimator covariance tracked the true
errors in the estimated parameters.
For this example another ten sets of noisy data were gener-
ated. All ten samples were identical except for the random
noise added to thé data which was varied as was explained in
Example One. The data were simulated this time starting at
about 150 seconds prior to reentry and going to impact for a
total of 206.5 seconds. The data were simulated as 1 pps
prior to reentry and 10 pps thereafter. This amounted to a
total of 698 time points, and as in the previous example,
the errors in the data were simulated as zero mean, white
Gaussian noises with standard deviations of 5 m, 0.015 deg,
and 0.020 deg respectively for range, azimuth, and elevation.
One of the data sets has been plotted in Figure IV-4 for re-
ference. The data were simulated with a hypersonic ballistic
coefficient of 10,000 kg/sq m and B varying with Mach number.
A moderate maneuver was begun at approximately 10 seconds

prior to impact (~ 25 km altitude) by setting C. to 0.000001

T
and C_ to 0.00001 sq m/kg at this time. These values were
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selected to extend the flight time by about five seconds.

San e =g
W
LN

ey It was found that a value of Cc much larger than the one

K
t:

o ' used, applied at this altitude, resulted in the RV skipping
out. The plus sign on CT ilaplies a left turn and on Cc
o ' implies a climb up. The pertinent reentry parameters of
, ~ this model are plotted in Figure IV-5. '
4 Three separate cases were run. In each case all of the
i free flight data (first 152 seconds) were included in batch
one. Then the epoch was propagated forward 150 seconds to
the time of reentry. Thereafter each batch consisted of
50 points for case one, 30 points for case two and 10 points
- for case three with the epoch being advanced 2 points be-
tween batches. 1Initial estimates of position and velocity
at the first epoch were determined automatically by the pro-
! f!ﬁ gram and ballistic coefficient, Cp» and C, were initialized
at 5000 kg/sq m, 0.0, and 0.0 sq m/kg respectively. The pro-

pagated state estimates were used as initial estimates for .

.- .« eieicivs
GRS e

subsequent batches. For each case, the estimator was ini-

g tialized as the six state free-flight estimator consisting
E only of the position and velocity states with the program
5 switching to the BRV and MaRV estimators when divergence of
g the range residuals was detected. This shows up vividly

; in Figure IV-6 where for case one, the total RMS (RMST) of
> the range residuals and the RMS of the range residuals for
E each individual batch (BRMS) are plotted as a function of

; time. The time on this figure is in seconds after the first
B data point. Recall that the estimator switches from six

- 67
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states to seven states when the magnitude of the BRMS be-
comes significantly larger, in a stétistical sense, than
the RMST. This occurs at approximately 182 seconds in
Figure IV-6 when the difference, BRMS-RMST, becomes larger
than twice the standard deviation of the error in RMST. A
check is also made on the value of the dynamic pressure at
this time to prevent the filter from switching while aero-
dynamic parameters would still be unobservable. This pre-
vented the filter in this case from switching at 3 earlier
times when the BRMS went above the RMST + 20 curve. The
estimator switches again at approximately 190 seconds when
the maneuver is detected, this time switching to the nine-
state MaRV estimator. The RMST goes straight line after
this switch because it is no longer updated once the switch
has been made to the MaRV estimator. No provision was made
to switch from a higher to lower order estimator, but then
it's not considered necessary since once the switch is made
CT and Cc will be observable thereafter even though they may
be zero., Also plotted on Figure IV-6 is the mean of the
range residuals for each batch. 1Ideally this should be zero
for each batch. The same curves for the azimuth and eleva-
tion residuals are plotted as Figure IV-7 and 1V-8 and as
can be seen for this case neither azimuth nor elevation de-
tected the divergence. This varied however with data sets.
In some the maneuver showed up dramatically in the elevation
residuals (see for example Figure IV-9). In every case-one

run howvever, the divergences were detected in the range

69
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residuals. Originally the switching scheme included the
azimuth and elevation residuals but the final version uses

only the range residuals. For comparison purposes, similar

'.
)

e sy e
0 e RN
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RN S v Al d o
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[

plots for case two and case three are given in Figures JV-10

e
R

W
b
.
)
.

n

through IV-15, The estimator switching algorithm didn't

work as well in either of these cases as it did in case one.
With 30 points per batch, the program switched from the six
state estimator to the BRV estimator at 185 seconds then im-

mediately switched to the MaRV estimator. With 10 points

per batch only one switch is made also this occurring at

ﬁ;ﬁ 192 seconds when the maneuver is detected., These comparisons
"t, suggest the desirability of using the larger batch sizes.
éi; Next a comparison of the accuracies of the estimated

parameters for the three cases was made. This was accom-

.' fﬁ; plished by comparing the differences between the estimated
parameters and their true values, 1In Figures IV-16 through
IV-21 the .'ifference between the estimated position and veloc-
ity states and their true values from a single sample run

of case one are plotted. In Figures IV-22, 1V-23, and 1V-24

the estimated values of hypersonic ballistic coefficient, C

T
o and C, are plotted. Also in each of thu Figures IV-16
-;; through IV-24, plus and minus 3~0 curves from the estimacor
52 covariances are plotted. 1In an effort to nave space, when
T the case two and case three comparisons are made only the X
éia component of position and velocity and the adrodynumic para-
2} meters are included. These are¢ jincluded as Figures 1V-25

through 1vV-34, The comparisons may be summarjzod as fOl110wWH)




(a) Except for position, the state estimates aro
significantly dagrade¢ as the number of points
per batch is reduced from 850 to 30 to 10.

(b) The errors in the est.mates of the aerodynamic
paramoters are most affected by the reduction in
the number of points per batch.

(c) 1In all cases, axcept jumt beforc estimator switche
ing, the truo error is contained within the plius
and minus 30 curves,

Note, the apparant divargence of the estimator standard devia~
tion on each of the Figures I1V~16 through 1V=34 is a result

of the cnllapning.ot the batch size once Lhe last batch of
data is encountered. For example, say the batch sige is
specified to be 50 pointe. Once the 1ast 850 points of data
are processoad, then the batch size is reduced by the nunbe:

of points the epoch is advanced unt.il the epuch reaches the
final point., An alternate way to mechanike this would ho to
Jjust take the estimates frowm the last full batoch and propagate
tham to the final time,

The results of the single sumple runs indicate that

the state parameters can be estimuted excuptionaily well for
batch wiema of 50 pointm, In the region of peak deceleration,
vYhero the serodynamic paraneters are estimated mosL accurately,
the stundard devintionw aw determined from Lhe estimator co-
variance matrix ste wol) within a few percent. of the true
paramotnr veiuoM, «bnoul 2% for bal)lietic coetticiant andg O%

for Lthe turn and climb paranetein, In ordus to vur iry the
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results of the single sample covariance analysis, a ten run
Monte Carlo simulation was performed for the case one runs

(50 point batch sizes). The results of this Monte Carlo
simulation are plotted in Figures IV-35 through IV-43, 1In
each of these figures both the standard deviations from the
Monte Carlo simulation and from a single sample run are
plotted. Plus and minus values are piotted so as to locate
the zero line easily. The results of this Monte Carlo simula-
tion show that, in general the single sample standard devia-
tions are realistic, albeit conservative, estimates of the

errors in the estimated parameters.
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l‘ V  Summary, Conclusions and Recommendations
[18
:} ' A very flexible algorithm for post-flight analysis of
‘z : radar tracking data collected on a ballistic missile has
¢

been presented. Itfwas shown that by specifying certain
N values of input parameters, the algorithm would work in

either the batch weighted least squares mode or as a sequen-~

SO, s

tial estimator. Two numerical examples detailing the opera-
tion of the estimator in both modes were presented. For the

seguential estimator mode, a method was devised to allow the

CRAERY €T N

program to switch automatically from a free-flight model to

- a BRV model and then to a MaRV model. This means that the
algorithm can be used for free-flight or for reentry analyses,
R and the reentry may be either BRV flight or MaRV flight. A

; particular state vector of parameters to determine 1is selec-
I ted by initializing the state transition matrix to the iden-
. | tity matrix. For each parameter of the 9-element MaRV state
vector which is not to be included in the model, tte diagonal
;_ element of the initial state transition matrix corresponding
to that parameter is set to zero. This allows much greater
flexibility than was actually demonstrated in this report.

e It means that any combination of the nine-elements may be
used as the state vector of parameters tou be determined. As
? an example, if the position and velocity of the RV were ac-
curately known at reentry as might be provided by a long

< . free-flight track, one could conceivably solve only for the

& 111
%
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aerodynamic parameters while propagating position and velocity
according to the models given in Chaptér II. This could be
done in either the batch or sequential modes. A recommenda-
tion for future research is to compare the results of such a
technique to those given in this report.

The batch weighted least squares method which was pre-

sented in Example One of Chapter 1V, offers such attractive

features vhen compared with the sequential estimator that
one concludes that when the dynamic and measurement models
are accurately known, the batch method is preferred. The
attractive features mentioned above include:

(a) running time for the batch estimator is consider-
ably less than that required for the sequential
estimator,

{b) the estimator uncertainties are much smaller for
the batch estimator as indicated by a comparison of
Examples One and Twp of Chapter (V, and

(c) programming of the batch estimator is much simplier
and therefore less time consuming with few chances
of making errors.,

These features of the batch estimator, motivate one to look
“or ways of improving models, so that the batch estimator is
applicable. This is probably not possible for the MaRV since
there is no accurate general model of maneuvering flight;
however, for BRV flight, it should be possible to come up

with some analytic model, perhaps based on wind tunnel data,

to model accurately atmospheric drag. One such model was
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~
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suggested in Chapter II where C_, was given as a function of

D
Mach number

_Q=f+%+%. (11-71)

In the batch mode Kl’ k, and k5 could be included as param-
eters to be determined in the estimation process. The drag
model given by Eq (II-71) may not be the best model in gen-
eral. A recommendation for further study is to investigate
models like Eq (I1I-71) for the BRV case to see under what
circumstances the batch estimator would give reasonable re-
sults. It seems that this could only be done using real
data. |

A final recommendation for future study is in the area
of sequential estimation with small batch sizes, It was
mentioned earlier that for small batch sizes, a priori sta-
tistics had to be used to keep (P°'1+HTQ'1H) non-singular and
therefore invertible. It would appear that for very large
maneuvers or vhere CT and cc vary with time, small batch
sizes must be considered. When they were considered briefl:
in this study it appeared that there was an inverse relation-

ship between the batch size and a weighting factor applied

-1

to the inverse of the a priori covariance, P,

« More re-
search may reveal a relationship so that the weighting can

be applied automatically by the program from the batch size.

This investigation could also look at adaptively optimizing

113



and changing the batch size as a function of time. As an
O example, it may be advantageous to use smaller batch sizes in
regions of high deceleration and larger batch sizes in re-

R gions where the deceleration is not as high.
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APPENDIX A The Geometrical Shape of the Earth

Ll 2 w7 T T

This appendix describes the model used for the shape

of the earth and developes the relationships n~cessary in

oy SRS
Rosd [ *

Bl %

scme of the transformations involved in the trajectory esti-

LA )

mation problem.

e

g
<t

The geometrical shape of the earth is modeled as an

1.‘!‘

ellipsoid of revolution with the revolution being taken

about the minor axis which coincides with the earth's axis

of rotation. This ellipsoid of revolution, which differs

only slightly from a sphere, is used to locate positions on,
or above, the earth in a geodetic (or geographic) coordinate

system., Figure A-1 is a graphic portrayal of the reference

ellipsoid with the eccentricity greatly exaggerated showing
the parameters associated with the ellipsoid. The values
given for the semi-major and semi-minor axes are from the
World Geodetic System (WGS-72) reference ellipsoid. From the
geometry shown in figure A-2, the relationship between geo~
detic and geocentric latitude is determined. In the local
cartesian coordinate system of Fig A-2, the eguation of the
ellipse is

2 ,2

5 *4 -/ (A-1)

The geodetic latitude line is perpendicular to the tangent

plane at the earth's surface as shown, so that
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o @ - SEMI-MAJOR AXIS, 6378135(M)
b - SEMI-MINOR AXIS, 6356750(M)
h - GEOCENTRIC ALTITUDE

; £ - LOCAL RADIUS OF THE EARTH
| A - LONGITUDE
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: & - GEOCENTRIC LATITUDE

FIG A-1 PARAMETERS ASSOCIATED WITH REFERENCE ELLIPSOID
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FIG A-2 CROSS SECTION OF THE REFERENCE ELLIPSOID
USED FOR DETERMINING THE RELATIONSHIP BETUWEEN
GEODETIC AND GEOCENTRIC LATITUDE




) .
ang' = - d’/dg' : (a-2)
Differentiating eguation (A-1) we get
’ ’ z :
%, £ B (a-3)
Substituting (A-2) in (A-3), we obtain
* ‘z' a_z
7Avg = 4 7 : (A-4)
From the geometry of figure (A-2), we have
TAN @ = o’ '
v | (a-5)
Putting (A-5) into (A-4) we obtain
2 ¢
b mng =a*raw @ (A-6)
which is the relationship between geodetic and geocentric
latitude which was sought.

The radius of the earth at @ is also determined from

the geometry of Fig A-2.

/e’ =2 4?’ | (A-7)
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bl

: Solve (A-1) for y and substitute in (A-7) to obtain
ir (.;;-.'.
§ . 2, . 4t
1 % - 8 ' &~
E et = +(-S)b = E+3(-2) (A-8)
L L 2 .
§ Divide through by re to obtain
: -
2 ‘ 2
¥ =6 X, b -
2 / €l+,zl(/ Q:) (A 9)
i
b Rearranging (A-9) and recognizing
2
i
; z 2 (A-10)
f e 3
L
% we obtain
z
g‘« b 2 2 % |
YT £ = °/(-e ws'g) (A-11)
¥
; which gives the local radius of the earth for any geocentric
S
¢ latitude where e is the eccentricity given by
; 2
‘ 2 _,0,-4
e-(-2)
) (A-12)
¢
4
§
b
¢

hel )

¥ 122




-

PR AN W )
tataleletate ' HEER. TN -

¢ o -
‘e falal, " N, .

B TP

LREF & AR B

BENS RV PURPERFENE S TPRIY R KR RL

. . e e .
L4 S 0

- » WLl
WAL
o

APPENDIX B Partials Required in the Differential

Correction Process

Central to the working of the differential correction
process are the partial derivatives of the observations - in
this case range (R), azimuth (a), and elevation (E) - with
respect to the parameters to be estimated, in this case the
elements of the state vector at some epoch time, to. The
most general state vector for a MaRV is nine dimensional.

Let the state vector at the epoch time be defined as

. . e . 7
Xo *(Xo, %, 20, %o, Y, 20, A, G5, Cc) (B-1)

where the nine elements are as previously defined. No o sub-
script is required for Cp and Co since they are modeled as
constants. The partials required for the differential cor-

rection process then may be symbolized as

3R. BRi TR, aRi R, dR, dR, OR. OR.,

?

— ——— — ———— —r —— — c—— — ——

9 3 9 ) 3 d d o ]
Xo Yo Zo Xo YO Zo B C C




where the subscript i is used to denote the time, t; of the

.th

i measurement i.e., Ri = R(ti). If there are n measure-

ments, then i =1, 2, 3, ... n, t, may Or may not equal toe

In this developme: t t, is always greater than or egqual toe
The radar range, azimuth, and elevation at ti are all

functions of the RV's position at t, .

R = B (XN, %) (B-2)
A= A, Y, 2p) (8-3)
£ =L Z) (B-4)

where Xi, Yi’ and Zi are elements of the state a ti in the

ECI coordinate system,

(B-2) is determined from (B-3) by the chain rule for partial

derivatives given by the following matrix equation

zﬁ/;;ﬂ /ax. W/ DU/

i/ o W/ W/ WL/ ([T, , T

%/32 W/l WL 11, || W/,

9, /3 W/ WA I/ ey

W8/ Wy W/ 3T/ " (B-5)
/o2 diple Wi/AL /2L || Kifys

/P Mnh Wohp w/w il R

A& /3 Milnlr  We/¥6 /3

K/ ¥Milsce  WrC /¥

where the matrix is a partitian of the state transition

matrix $(t.,t ) to be developed on the next few pages.

Azimuth and elevation partials are calculated similar

to (B-4) using the same partition of f(ti,to).
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The State Transition Matrix

The state transition matrix is defined as

(2 W 2 ¥ W % ow K 2

% B R ERE KL % %

X Xy 3 A

% % £} %!' M W '5!}" > W

U W X W AW % W W 2

T 3;,. gzz. 2, % 2 _;opL e ‘5%,

W W &M o W W K

W W, W WM. ’?lx', o '55’( *, YA

& W M W W A WU W K

Set)=| % % W W W W W A

W W ¥ % ¥ ¥

%o 2 W WL % 3%, %.. %i. '}%

A W W ¥ oM M W ¥ XK

v ¥ A T Y W 3B SR A

EX{ ¥ W W lz r' ; e

6 3% % 3G 6 ¥ 'a%— % X

W W W W} o W W X

L—acc ¥ 3 ¥ ¥ G 3 ¥ e

The -staté transition is propagated .to the ti;n-e of each ob-

A servation by the matrix chair_l rule equation

5('-‘1}/, £o) =.¢-({:', éo) -g(é‘f/, f:') (8-7.)

Blt, ) =T (B-8)

vhere I is the identity matrix and the elements of P(t, ,,t;)

. *
are determined from the truncated Taylor's series

Xieo = Xi 4{’,-/.\{. 1 )‘('(QE: (B-9)
2

*
These simplifying approximations are used only for
partial calculations and not for propagating the state.

125




i

SRR PR IR N WP § s e

] "."'W.'m' Vg it

aber

TR

TR
/l

< o

e & Radiandi Tl

-——— .
PPN g ‘xm..-.u.ﬂ.z.‘.nm‘zm A

Xip = X; # X 4t (B-10)
Yoo = ¥+ oot + £ Yo (B-11)
o =3 ot ISCREE
2, = Ziv 2ot +4 Zcat" | (B-13)
2= ZitZint (B-14)

Iy - . (B-15)

Criv Gy (B-16)
Ct"fl = CC" (B-17)

where X, Y, and Z are the components of the total accelera-

tion due to gravity, drag, turn, and climb given in Chaoter

-y
[1%4

I1 and

at = ¢, -t; (B-18)

Partials of Graﬁity Acceleration

The earth's gravity model which is used in propagating

the state vector is given in Chapter 1I; however, a simpler
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approximation is sufficiently accuraté for calculating the

(* partials

. . Sy, 20

i 2 | (8-19)
9’,1-4/”7;?’ | - ~ (B-20)

.- Ny e
PSS SRR

i e -2
¥ where

X r ,_(X‘.".,%‘le")t (B-22)
Then

" 2
2X3yaxi . 4—/1‘,’{(—‘% "/) (B-23)

7 3 XY,
BX’/yI J//' (B-24)

g
; aifar « ZZ | (5-25)

ay ¥

%/ax, = Yoy (B-26)

R e |

» /” P 3 .
W%X - -i,(-l&,lf -/) (B=27)

%7, * 37‘% (B-28

127

s & s 2

g iryteteri-vry: Yaytw > - vy TeapY 2 - Al i Bk Pkl SRt e Mrn P vk Mkt 1 Bt B i ol ekt i A it sl s " b, Wt o Y o T ey g




::?
!,?i_;
aZ%xi. gé; | (B-29)
ajz‘,,f/a y = aig,-/w (B-30)
‘.,"’/ 2_2.11_'
21%2" 7 (”, /) (B-31)

All other partials of the gravity acceleration with respect

LU ¢ e

to the state are 2zero,

ST
s Ualeange,
o

Partials of Drag Acceleration

The partials of acceleration due to drag are determined

from the following equations

Ko = - /%E‘-C‘V)'(.,,- (B-32)

3’3}- Xo,-}l:‘ (B-33)

Z,® qu‘ (B-34)
-ﬁ e ’2‘5_ (B=-35)
] Q L t
[()quﬁ();-.mg)'* Z¢] (B-36)
ENCR Y'*Z')t' T2 (B-37)
p = Yt 2) T\ ety
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The twenty-seven partials of drag acceleration with respect

to the state elements are then

(B-39)

(B-40)

(B-41)

t

 Npe _ ”
3.: égg?%gl

(B~42)

_ g“,é%

) <
< <
] L
a a
LN
Vl.—o
13
|
S
— ‘N e
L) N VIC;

A,a,
N o
S AR

S

P EEN S

(B-45)

4

&y, Wy

X“fg% 7000

,3_8'0,' =
oZs

(B-46)

(B-47)

e

..x..ﬂu.

aa
“

TN

NS

(B-48)
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Pértiéis of Turn Acceleration

frw TemnTom T s Tew Tl

(B-49)

(B-50)

(B-51)

(B=52)

(B-53)

(B-54)

(B=-55)

(B-56)

(B-57)

(B-58)

(B-59)

The components of the acceleration due to turn were

developed in Chapter II as




X;; = Cr/o,\é:[Yzl 'Z/(”“ﬂ)(,'j (B~-60)
7 ,

{4
% =G g 4, (2% +0Y) -X 2] (B~61)
2y =Cr g Vg [ 0k -0 % Ok +%) (B-62)
7
L .ot |
= [04 228 + (e - 2+ (6% %5 ) (B-63)

In an effort to simplify the notation in the rather complicated
turn partials, the i subscript which denotes those parameters
which vary with tiﬁe, will be dropped. Then the partials of
turn acceleration with respect to the nine state elements

are

. 2 RN, | DA
i . q[ ol .frm (yz-2%) ax] 4 YL g%_)} (B-64)

5 oA [T2 - (FR X1 |, zhe-x2 (04 )
'75 C;Zﬂ - 77 X |+ = o (B-65)

7 e ol 7 G- X) ~ (Ve -vie) 25 T 4 X Ve -YRe 324N
2 4?/{ )7§‘ )u.J-r——f——-Qﬁ; } (B~66)

3 $_ 7 _ay 2[ -— ‘ [ |
%’-Cr[/"" {rz (yzﬂzy,.) ,_,_]+ ;/5_;}:_3_%:;)} (B-67)
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_aZ.r z;{/o%. LLIZ&mY)-(xt-m)ﬂ_} XYmYX. agg_ )5

%{ [/oKLN. (%Y)ﬂ-l yz—zm_gg_z_)

oA ] vk

2ol |, Zox: M)j
uir-c,{pz‘ ~(vi- zx)%]+_uz_sz_g9_g}
%-Crlf" Lk (ZX,.-XZ)MJ_* Xz lgé—-}

337-3{4,{,4{ TY- (xx-wg—{] xvr-mgg_uj

. @{/a Al 'TZ’(Yé"Zi)ﬁ-] L YI-2L ) u }

I 7 7
. g}/al(t[- (z)'(;:xi)%] _&-_xz. E{L S

.C[/K‘[/X (N’Y)c) Xy, Y,\;z_ge___)i

ok ).
.(',Z/V [Zy-(vz zz)jf_}* vzr-zy 3ok )}

. R :l?« 2R I

'CrZ/”K [77< (ZX:XZ) 7‘]* _‘2_7_—“_’6 22 }

i

(B-69)

(B-70)

(B=-71)

(B-72)

(B-73)

(B-74)

(B=75)

(B~76)

(B-77)

(B-78)

(B~79)

(B-80)
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az,gcjlpz'[ gxx -yx% + xxg-Yx ) i‘)j

vhere

C T o (Yz-zX)za -(zX-x2)Z +(xY-YX)(V.- Xn)
X T .

Az; o (V2-2Y)7 +(2X-X2)20 - (XY~ YR)(X20Y)
2 | 7

o o -(yz-2Y) Y + (ZXk-X2)X.
A2 7
L . (ZXK2)Z -(XVe-yYR)Y
X 7
C _ -(yz-2¥)z 4 (XY~ YR)X
Y 7
AT _ (Y2-29)Y-(ZXoX2)X
L 7

and where

N Qgggi).g._/o(}lill 7;;:r)
) p(o10 - 167)
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(B-81)
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. (B-83)

(B-84)

(B-85)

(B-86)

(B-87)

(B-88)

(B-89)

(B~90)
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B T

zgrg_ﬁ = 2pV% i (8-92)
bg'g@ = 2p2 | e (pee)
57

Additionally

.,ol{ (Yz-z&
ac,

(B-94)
= Pk ﬁ___‘_X_El (B-95)

BC,

z 0‘- ‘ - .
3z, o PUQLEYR) (B-96)
G 7 -

Partials of XT, YT’ and ZT wrt Bo and CC are all zero.

Partials of Climb Acceleration

The components of the acceleration due to climb from

Chapter 1II are

Xe = Cple [_Lof; w'qT- 2(zX-x z_)J] (B-97)

% = cpu [zgz-zx) “AXg v ] (8-98)
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. . Qf,\g[)‘c(ziu -szlr—\‘/._(Y}:—z?..)J' (B-99)

from which the partials of the climb acceleration with respect

to_ the state elements are

LA z,olé'[f[%i"-n- (2XYe- i) [ (O - Vi) - 2 (20X 2) gEJ

s 7
Bl -Yk) - 2GR x2) ) | (Bo100)
e T |

%i’; -C, l/% [f[’)'(ﬁ'._ 1L (72 +XX)] '[;72‘0’2 ~2%) = ¥ (XY 'Y)'(.ﬂ%q

+ 20V2 -2%) XXV~ YK) Q%K_)g (B-101)
7 X
l. \ ’

22, ,Q{ fz[_rﬁm-n(zm—yz)] [(Ehe-x2) - (v2 -2 A% J
r)s 73

+ K(ZXA.’XZ):%(YZ'ZX.) M} (B-102)
7 X

., ;/M[r Ko (Y o 2] (4 (X - Y -i(zk.-xzj%%J
1] =

4 YalXY -VK) ~£(Zkun X2) 7%;‘4)- (B-103)
7 v
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4 2v2=2%) ~ha(XVa - i) a_@y}
7 2y

2, ,C‘EM [r[-izm'(zzi.-xi)]—[h(z&—xi) Ya(vi-zy, AT
?Y 7-7
X (2% -XZ) Yal¥Z-Z%) 3(ol4)
! 7 2y }

35‘ =C gpu[ i -[% (xi-;ii.) - 1(zxe-X1)] 3%

Y (XY = ¥%a) -2(ZXe-X2) Aol
ettt )

S cfouo7e - (202w ek i)
2z =

+ 2072 -7%) % (XY - YR 2(pl) }
7 7

éie.ccjpv, [r (e i) -[Xe (2he- x2) - Yo (¥E-2%]
7 L 7-1

(B-104)

(B-105)

(B-106)

(B-107)

4 Xe(2%- xz) . (Y2-23%.) de__} (B-108)

) ,0%[ 7Eyye-22) [V (6% -y -2 (2 XX )27 }
X ¢ 7

Yo (XY - 2(ZXa-X2) 20 K) -
+ _.g’?_s (B-109)

7
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¥ .0 )Fu[r(-xwzvx.) - [20v2-25) ~%a(¥ia- Y] 2T
T aR :

7'!7

+z(yz-zx);_>a<x% SR } (8-110)

% =C‘{Pu[r(zz>'<¢ - XZ) - L;_X:(ZX«-"d) —)Z(vi—z%)]%;rj

ERPAT L YRR IR G - ¢ Lo st oo ok S A S o

faZ¥a X2) ~Sul¥2-2Ye) ) 0} _
<+ -%~x | (B-111)

=
e )l 7 (2% - V%) = [¥e 00V~ YX) - 2(2ka ~x 2 }2Z
oY P 7z

L %O YR =2 (2% ~X2) D ga}
7 Y | (B-112)

B fpuf et w0 20t 20 Ak i)
I L 7z

LB LRERI wa . R
%y

2(yz-2Y) =R (XY ¥R oK) _
+ .(%7 (B-113)

D v

=
¥ oe . {/ou[r(-vz+zzx)-LK(2*¢—Xi>-$’.(vz -zug}

; 7Y 71

Xo(Z%X2) =% AYZ-ZY) ? ‘)} -
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where the partials of T are as given in the previous section

and

_%1)3 - —pln _YeY | (B-118)
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The partials of X¢, Y% , and Zc wrt Bo and Cp are all zero

and
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With the partials of acceleration with respect to state ele-

ments given in this and previous sections and equations (B-9)

through (B-18) all of the elements of c(ti+1,ti) are at hand.
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